Search results for "Abiotic stre"

showing 10 items of 66 documents

Effects of water stress on emission of volatile organic compounds by Vicia faba, and consequences for attraction of the egg parasitoid Trissolcus bas…

2017

When plants are damaged by herbivorous insects, blends of volatile organic compounds (VOCs) are induced and released and can also be used by parasitoids to locate hosts. The aim was to determine whether VOCs induced by water stress affect the plant-herbivore-para- sitoid system represented by broad bean (Vicia faba; Fabales: Fabaceae) stink bug (Nezara viridula; Hetero- ptera: Pentatomidae) egg parasitoid (Trissolcus basalis; Hymenoptera: Platygastridae). The effects of water stress (expressed as the percentage fraction of transpirable soil water [FTSW] supplied) alone and in combination with N. viridula damage (feeding plus oviposition) were deter- mined according to: (1) the behavioural r…

0106 biological sciences0301 basic medicineAbiotic stress; Herbivore damage; Parasitoids; Vicia faba; VOCs; Agronomy and Crop ScienceBiology01 natural sciencesParasitoidHerbivore damage03 medical and health sciencesBotanyParasitoidsAbiotic stressVOCfungiVOCsfood and beveragesPentatomidaeBiotic stressAbiotic stressbiology.organism_classificationVicia fabaParasitoidVicia fabaChemical ecologyHorticulture030104 developmental biologyAbiotic streSettore AGR/11 - Entomologia Generale E ApplicataOlfactometerNezara viridulaAgronomy and Crop Science010606 plant biology & botany
researchProduct

Identification of key genes and its chromosome regions linked to drought responses in leaves across different crops through meta-analysis of RNA-Seq …

2019

Background Our study is the first to provide RNA-Seq data analysis related to transcriptomic responses towards drought across different crops. The aim was to identify and map which genes play a key role in drought response on leaves across different crops. Forty-two RNA-seq samples were analyzed from 9 published studies in 7 plant species (Arabidopsis thaliana, Solanum lycopersicum, Zea mays, Vitis vinifera, Malus X domestica, Solanum tuberosum, Triticum aestivum). Results Twenty-seven (16 up-regulated and 11 down-regulated) drought-regulated genes were commonly present in at least 7 of 9 studies, while 351 (147 up-regulated and 204 down-regulated) were commonly drought-regulated in 6 of 9 …

0106 biological sciences0301 basic medicineCrops AgriculturalLeavesArabidopsisPlant ScienceGenes Plant01 natural sciencesZea maysChromosomes PlantTranscriptome03 medical and health scienceschemistry.chemical_compoundSolanum lycopersicumAuxinlcsh:BotanyArabidopsis thalianaVitisRNA-SeqDrought Leaves Meta-analysis RNA-Seq Seedlings TranscriptomicGeneAbscisic acidTriticumSolanum tuberosumchemistry.chemical_classificationGeneticsbiologyDroughtDehydrationAbiotic stressfungiChromosome Mappingfood and beveragesbiology.organism_classificationlcsh:QK1-989Plant LeavesMeta-analysis030104 developmental biologychemistryCell wall organizationTranscriptomicDrought; Leaves; Meta-analysis; RNA-Seq; Seedlings; Transcriptomic; Arabidopsis; Chromosome Mapping; Chromosomes Plant; Crops Agricultural; Dehydration; Genes Plant; Lycopersicon esculentum; Malus; Plant Leaves; RNA Plant; Solanum tuberosum; Triticum; Vitis; Zea maysSeedlingsRNA PlantMalusSolanum010606 plant biology & botanyResearch Article
researchProduct

Identification of Stress Associated microRNAs in Solanum lycopersicum by High-Throughput Sequencing

2019

Tomato (Solanum lycopersicum) is one of the most important crops around the world and also a model plant to study response to stress. High-throughput sequencing was used to analyse the microRNA (miRNA) profile of tomato plants undergoing five biotic and abiotic stress conditions (drought, heat, P. syringae infection, B. cinerea infection, and herbivore insect attack with Leptinotarsa decemlineata larvae) and one chemical treatment with a plant defence inducer, hexanoic acid. We identified 104 conserved miRNAs belonging to 37 families and we predicted 61 novel tomato miRNAs. Among those 165 miRNAs, 41 were stress-responsive. Reverse transcription quantitative PCR (RT-qPCR) was used to valida…

0106 biological sciences0301 basic medicineEstrèslcsh:QH426-470ATP-binding cassette transporter01 natural sciencesbehavioral disciplines and activitiesDNA sequencingdifferential expression03 medical and health sciencesDifferential expressionSolanum lycopersicummicroRNAGeneticsTomàquetsGeneGenetics (clinical)Abiotic componentGeneticsbiotic and abiotic stress responseHigh-throughput sequencingbiologyAbiotic stressfungi<i>Solanum lycopersicum</i>food and beverageshigh-throughput sequencingbiology.organism_classificationlcsh:Genetics030104 developmental biologyReal-time polymerase chain reactionmiRNAsBiotic and abiotic stress responseSolanumHexanoic acidhexanoic acidmiRNA targets010606 plant biology & botanyGenes
researchProduct

Arabidopsis mutant dnd2 exhibits increased auxin and abscisic acid content and reduced stomatal conductance

2019

Arabidopsis thaliana cyclic nucleotide-gated ion channel gene 4 (AtCNGC4) loss-of-function mutant dnd2 exhibits elevated accumulation of salicylic acid (SA), dwarfed morphology, reduced hypersensitive response (HR), altered disease resistance and spontaneous lesions on plant leaves. An orthologous barley mutant, nec1, has been reported to over-accumulate indole-3-acetic acid (IAA) and to exhibit changes in stomatal regulation in response to exogenous auxin. Here we show that the Arabidopsis dnd2 over-accumulates both IAA and abscisic acid (ABA) and displays related phenotypic and physiological changes, such as, reduced stomatal size, higher stomatal density and stomatal index. dnd2 showed i…

0106 biological sciences0301 basic medicineHypersensitive responseStomatal conductanceDrought stressPhysiologyMutantArabidopsisPlant ScienceBOX PROTEIN TIR101 natural sciencesSIGNALING PATHWAYS03 medical and health scienceschemistry.chemical_compoundBarley nec1Abscisic acidAuxinGene Expression Regulation PlantArabidopsisLESION MIMIC MUTANTSGeneticsDISEASE RESISTANCEAuxinPLANTAbscisic acid1183 Plant biology microbiology virologyGENE-EXPRESSION2. Zero hungerchemistry.chemical_classificationbiologyIndoleacetic AcidsAbiotic stressArabidopsis Proteinsfungifood and beveragesGATED ION CHANNELSHordeumbiology.organism_classificationDroughts030104 developmental biologychemistryArabidopsis dnd2SALT-STRESSPlant StomataBiophysicsINNATE IMMUNITYAIR HUMIDITYSalicylic acid010606 plant biology & botany
researchProduct

Current Experience with Application of Metal-based Nanofertilizers

2019

Agriculture is one of the many fields in which nanotechnology is currently applied. At the nano-scale, materials exhibit different properties mainly due to the reduced molecular size which allows different interactions between molecules. Nowadays, the agricultural sector demands methods that not only increase crop productivity, but are also sustainable and produce less environmental impact. Large-scale application of chemical fertilizers is common in farming with the aim of increasing productivity. The use of large doses of fertilizers, however, causes more harm than good. Chemically intensive agriculture disturbs the soil-mineral balance, pollutes soil, water and air, and makes lands less …

0106 biological sciences0301 basic medicineNutrient managementAbiotic stressIntensive farmingbusiness.industryAgricultural engineering01 natural sciencesCrop productivityEnhanced bioavailability03 medical and health sciences030104 developmental biologylcsh:TA1-2040AgricultureSustainable agriculturelcsh:Engineering (General). Civil engineering (General)businessProductivity010606 plant biology & botanyMATEC Web of Conferences
researchProduct

Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species

2020

As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visuali…

0106 biological sciences0301 basic medicinePlant ScienceProtein degradationBiologyGenes Plant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalSettore AGR/07 - Genetica AgrariaMYBSecondary metabolismAbscisic acidGeneAbiotic componentGeneticsabiotic-stresses differentially expressed genes leaves meta-analysis RNA-Seq transcriptomic.Abiotic stressGene Expression Profilingfungifood and beveragesPlant LeavesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologychemistryCinnamoyl-CoA reductaseAgronomy and Crop Science010606 plant biology & botany
researchProduct

Identification of ABA-Mediated Genetic and Metabolic Responses to Soil Flooding in Tomato (

2021

Soil flooding is a compound abiotic stress that alters soil properties and limits atmospheric gas diffusion (O2 and CO2) to the roots. The involvement of abscisic acid (ABA) in the regulation of soil flooding-specific genetic and metabolic responses has been scarcely studied despite its key importance as regulator in other abiotic stress conditions. To attain this objective, wild type and ABA-deficient tomatoes were subjected to short-term (24 h) soil waterlogging. After this period, gas exchange parameters were reduced in the wild type but not in ABA-deficient plants that always had higher E and gs. Transcript and metabolite alterations were more intense in waterlogged tissues, with genoty…

0106 biological sciences0301 basic medicinePlant Sciencelcsh:Plant culturetomatoNitrate reductase01 natural sciencesTomatoabscisic acid03 medical and health scienceschemistry.chemical_compoundAbscisic acidBIOQUIMICA Y BIOLOGIA MOLECULARlcsh:SB1-1110HypoxiaAbscisic acidOriginal ResearchOxidase testbiologyChemistryAbiotic stresshypoxiafungiWild typefood and beveragesMetabolismbiology.organism_classificationSignaling030104 developmental biologyMetabolismBiochemistrySoil floodingsoil floodingSolanumsignalingmetabolism010606 plant biology & botanyWaterlogging (agriculture)Frontiers in plant science
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Oxygen Availability during Growth Modulates the Phytochemical Profile and the Chemo-Protective Properties of Spinach Juice.

2018

Fruits and vegetables are a good source of potentially biologically active compounds. Their regular consumption in the human diet can help reduce the risk of developing chronic diseases such as cardiovascular diseases and cancer. Plants produce additional chemical substances when subject to abiotic stress or infected by microorganisms. The phytochemical profile of spinach leaves (Spinacia oleracea L.), which is a vegetable with widely recognized health-promoting activity, has been affected by applying root hypoxic and re-oxygenation stress during plant growth. Leaf juice at different sampling times has been subject to liquid chromatography mass spectrometry (LC-MSn) analysis and tested on t…

0106 biological sciences0301 basic medicineSpinaciaAntioxidantHT29 cell lineCell Survivalmedicine.medical_treatmentLiquid Chromatography-Mass Spectrometry<i>Spinacia oleracea</i> L.lcsh:QR1-502antioxidant activitySpinacia oleracea L.Anti-proliferative activity; Antioxidant activity; Comet Assay; HT29 cell line; Liquid Chromatography-Mass Spectrometry; Spinacia oleracea L;medicine.disease_cause01 natural sciencesBiochemistrylcsh:MicrobiologyAntioxidantsMass SpectrometryArticle03 medical and health sciencesSpinacia oleraceamedicineHumansFood scienceMolecular BiologyCell ProliferationbiologyAbiotic stressChemistryChemistry PhysicalPlant Extractsfood and beveragesBiological activitybiology.organism_classificationAntineoplastic Agents PhytogenicComet assayFruit and Vegetable JuicesOxygen030104 developmental biologyPhytochemicalSpinachanti-proliferative activityComet AssayDrug Screening Assays AntitumorHT29 CellsOxidative stress010606 plant biology & botanyChromatography LiquidBiomolecules
researchProduct

Physio-morphological traits and drought stress responses in three wild Mediterranean taxa of Brassicaceae

2019

Crop wild relatives (CWRs) have extremely relevant roles in biodiversity conservation, in investigating phylogeny and improving abiotic stress tolerance of crop plants. We screened the variability in leaf functional traits of three CWRs of kale crops (Brassica oleracea) from Sicily, Italy, grown in pots under well-watered and drought conditions. Our aim was to highlight traits in the different genotypes of endemic Sicilian threatened taxa. We measured several structural/anatomical traits (stomatal size, density and stomatal pore index—SPI, leaf mass per area—LMA) and leaf functional traits (stomatal conductance—gs, leaf water potential—ΨL, leaf temperature (TL), leaf relative water content—…

0106 biological sciences0301 basic medicineStomatal conductancePhysiologyTurgor pressureSPIStomatal conductancePlant ScienceCrop wild relative01 natural sciencesSettore BIO/01 - Botanica GeneraleCrop03 medical and health sciencesLMASettore BIO/04 - Fisiologia VegetaleSicilyWater contentbiologyAbiotic stressPlant physiologyBrassicaceaeLeaf water potentialbiology.organism_classificationHorticulture030104 developmental biologyBrassica oleraceaAgronomy and Crop Science010606 plant biology & botanyActa Physiologiae Plantarum
researchProduct